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ABSTRACT

Recent progress in speech emotion recognition (SER) technology
has benefited from the use of deep learning techniques. However,
expensive human annotation and difficulty in emotion database
collection make it challenging for rapid deployment of SER across
diverse application domains. An initialization - fine-tuning strategy
help mitigate these technical challenges. In this work, we propose
an initialization network that gears toward SER applications by
learning the speech front-end network on a large media data col-
lected in-the-wild jointly with proxy arousal-valence labels that are
multimodally derived from audio and text information, termed as
the Arousal-Valence Speech Front-End Network (AV-SpNET). The
AV-SpNET can then be easily stacked simply with the supervised
layers for the target emotion corpus of interest. We evaluate our
proposed AV-SpNET on tasks of SER for two separate emotion cor-
pora, the USC IEMOCAP and the NNIME database. The AV-SpNET
outperforms other initialization techniques and reach the best over-
all performances requiring only 75% of the in-domain annotated
data. We also observe that generally, by using the AV-SpNET as
front-end network, it requires as little as 50% of the fine-tuned data
to surpass method based on randomly-initialized network with
fine-tuning on the complete training set.
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1 INTRODUCTION

The ability to sense human internal emotion states with measurable
data, e.g., speech, video, and physiology, provides key enablers for
the next-generation human-machine interface design and offers
objective analytic to facilitate experts in decision making across a
wide range of application domains, e.g., health [24, 26], education
[21, 23, 27], and commerce [15, 32]. Speech emotion recognition
(SER) technology has progressed tremendously further due to the
fact that speech is one of the most natural form of human daily
communication [1]. Recently, SER has also started to adopt the use
of deep neural network architecture to achieve further improved
recognition performances (e.g., [11, 12, 17, 38]). While the deep
learning method is capable of obtaining the state-of-art recognition
accuracy, the wide adoption and rapid deployment of SER across
applications still hinders by issues of non-scalable emotion annota-
tion collection with inherent high variability in the data collected
across diverse domains and situations.

Among successful usage of deep learning, the strategy with
the network architecture of ‘initialization - fine-tuning’ has been
utilized in order to handle these technical issues [33, 39, 40]. Initial-
ization, also referred to as pre-training, network is often obtained
by learning from a large amount of background corpus in order
to derive situational-invariant and robust-cross domain feature
representation, and fine-tuning is where the network is learned to
perform the final in-domain recognition tasks. In fact, the generality
versus specificity of neurons in deep convolutional neural network
(CNN) has been examined to understand the transferability of in-
formation for heterogeneous recognition tasks, and it is concluded
that the initialization - fine-tuning method outperforms random
initialization [36]. For example, VGG is a set of well-known pre-
trained networks learned from the ImageNet [34]. Various works
have demonstrated that by using VGGs as the initialized image
network, it can obtain high recognition rates in heterogeneous im-
age recognition tasks, such as prostate cancers recognition using
mpMRI scans [6] and thyroid nodules classification using ultra-
sound images [25]. This particular network architecture not only
obtains an improved recognition performance but also reduces
human effort in collecting in-domain labeled data.

Past works in SER have also utilized a similar strategy in ob-
taining improved cross-corpora emotion recognition. For example,
Fayek et al. used the technique of automatic speech recognition
(ASR) to examine the transferability of acoustic features for SER [9].
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Table 1: A summary on the key statistics of the three databases used in this work: Background database - DaAi, and two Target
emotion databases: IEMOCAP and NNIME. The label distribution for DaAi is from our derived proxy labels, and the label
distribution for the two target emotion databases are the ground truth human annotations.

Database Total Total Time Label (Arousal) Label (Valence) Label (4 Emotion Categories)
(utterances) (segments) (hrs.) High Low Positive Negative Happiness Anger Sadness Neutral
DaAi 20082 62288 14.01 9581 10501 11672 8410 - - - -
IEMOCAP 5538 23360 5.26 2576 2962 2374 3167 788 594 652 897
NNIME 4021 12210 2.75 1950 2071 2151 1870 - - - -

Deng et al. performed feature transfer using sparse autoencoder
between emotion corpora [8]; similarly, Huang et al. proposed a
PCANet to align feature spaces between emotion corpora [14], and
Neumann et al. investigated adaptation technique in transferring
the network weights from English to French for cross-lingual SER
[30]. While these works have examined cross-corpora SER, most of
them focus on transferring between emotion corpus. Most of the
existing corpus is often limited in scale making the initalization net-
work learns from data potentially with inadequate variability. Fur-
thermore, while abundant media data is easily obtainable nowadays,
directly pre-training on this widely-diverse data without proper
emotionally-relevant constraint may not benefit the recognition
network; for example, Badshah et al. presented a non-successful
fine-tuning using pre-trained AlexNet on speech spectrogram for
emotion recognition [3].

In this work, instead of learning to transfer between emotion
corpora, our aim is to derive a meaningful speech front-end net-
work that can easily be used in different emotion contexts (i.e.,
languages, scenarios, domains, etc) in order to obtain high recogni-
tion accuracy with lesser human annotation effort. In this work, we
propose an arousal-valence speech front-end network (AV-SpNET)
by learning from a large-scale media data collected in the wild
to be the initialization network. We further introduce the use of
multimodally-derived proxy emotion labels, i.e., based on rule-based
prosody information and dictionary-based lexical methods, in as-
signing arousal and valence labels to these originally unlabeled data.
The AV-SpNET is then optimized by learning with a combination
of reconstruction and proxy label recognition loss criterion in a
CNN speech network architecture. The AV-SpNET once learned is
frozen and stacked with recognition networks implemented with
fully-connected dense layers within each target emotion corpus in
order to perform the final speech emotion recognition.

We evaluate this front-end network on two separate emotion
corpora, the USC IEMOCAP database [5] and the NNIME database
[7]. The use of AV-SpNET obtains the best emotion recognition
accuracy compared to other initialization techniques. More impor-
tantly, with the use of AV-SpNET, the recognition network requires
lesser amount of annotated data to perform fine-tuning. Specif-
ically, it achieves the best 65.1% in arousal classification for the
NNIME database using 75% of fine-tuning data (a 10.8% relative im-
provement compared to random initialization) and 53.0% in valence
classification using also 75% of fine-tuning data (a 7.2% relative
improvement compared to random initialization). In the IEMOCAP
database, it achieves the best 71.1% in arousal classification using
75% of fine-tuning data (a 7.0% relative improvement compared to
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random initialization), 52.2% in valence classification, and 43.0% in
four-class emotion classification with 75% of fine-tuning data (a
9.4% relative improvement compared to random initialization). We
also observe that in most of the recognition tasks, approximately
50% of the fine-tuning labeled data is sufficient to achieve a reliable
recognition accuracy when using the proposed AV-SpNET.

The rest of the paper is organized as follows. Methodology and
databases are detailed in Section 2. Section 3 includes the experi-
mental setup and results. Conclusion is discussed in Section 4.

2 RESEARCH METHODOLOGY

2.1 Databases

This work includes one background database, the DaAi Media Cor-
pus, that is used to train the AV-SpNET, and two target emotion
databases, the USC IEMOCAP database and the NNIME database,
which are used to evaluate the emotion recognition. We will briefly
describe each in the following. Table 1 summarizes the key statistics
of the database used in this work.

2.1.1 Background: The DaAi Media Corpus. The DaAi Media Cor-
pus is composed of a large collection of Chinese television programs
with audio recordings and lexical transcripts. The corpus collects
three years worth of TV programs with over thousands of hours of
audio data. The genre of the programs included is diverse ranges
from education, documentary, healthcare, news, talk shows, inter-
views, to religion and so on. Each of the program differs in the
number of speakers, the environment backgrounds, and the show
settings. This large collection of TV programs includes a vast di-
versity of media data. In this work, we use approximately 14 hours
from 20 different programs (20082 utterances) of audio and tran-
script data. The programs included in this work are usually talk
shows, where there is often a main host or narrator per episode.
This corpus was not originally collected for emotion recognition;
hence, neither specific affective conditions were pre-defined or
assumed, nor any prior emotion label existed.

2.1.2 Target: The USC IEMOCAP Database. The USC Interactive
Emotional Dyadic Motion Capture (IEMOCAP) database [5] is an
well-known English emotion database including five sessions of
10 unique speakers engaging in dyadic interactions. It includes 12
hours of audio-visual data segmented into utterance. Each session
has both performances of selected emotional scripts and improvi-
sation of hypothetical emotional scenarios. There are six human
evaluators been asked to assess the emotional content and each
utterance is labeled by three annotators on categorical emotions
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Figure 1: A complete schematic of our initialization - fine-tuning framework for SER. The left shows our proposed network
architecture of arousal-valence speech front-end network (AV-SpNET) that is learned from the background DaAi media corpus,
and the right shows the recognition network by stacking AV-SpNET with fully connected dense layers to perform the final

emotion recognition in the given target emotion databases.

and two annotators on dimensional attributes. The database orig-
inally includes five emotion categories: happiness, anger, sadness,
neutral, and frustration, where the raters were free to mark other
emotions while annotating. In this work, following previous stud-
ies on the same database [10, 28], we focus on the four emotion
categories: happiness merged with excitement, anger, sadness, and
neutral. In terms of dimensional annotation, this database includes
three primitive attributes: arousal, valence, and dominance; each
rating ranges between [1, 5] in step of 0.5. We utilize arousal and
valence attributes in this work, and we further use the average of
all utterances for each speaker to binarize the attribute into binary
classes: high and low. In this work, we utilize 5538 from 10039 avail-
able utterances where each utterance is long enough for further
processing and no overlapping talks occur.

2.1.3 Target: The NNIME Database. The NTHU-NTUA Chinese
Interactive Multimodal Emotion (NNIME) corpus [7] is a newly-
released Chinese emotion corpus designed based on situating the
dyadic interactions in daily-life scenario settings. This database
consists of 11 hours of audio-video-physiology data with 44 actors
grouped in pairs to engage in spontaneous dyadic interactions. Each
session is an approximately 3-minute long affective interaction
steering along the pre-defined affect atmosphere. In this paper,
we take use of a subset from the 3-hour released version which
is 4021 out of 6699 utterances that are long enough for further
processing. The continuous-in-time arousal and valence attributes
are annotated by four different native raters in a scale ranged from
[—1, 1]. We average the time-continuous values for each utterance
and binarize it into either high or low to be our emotion label of
interest.

2.2 Arousal-Valence Speech Front-End
Network (AV-SpNET)

We propose to learn an arousal-valence speech front-end network
(AV-SpNET) on the background DaAi corpus. Then AV-SpNET is a
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multi-task structure with a task of CNN autoencoder and an addi-
tional task of proxy arousal and valence emotion labels recognition
that is learned on inputs of speech spectrogram. The multi-task
structure is designed in order to embed emotionally-relevant in-
formation in this initialization front-end network. The left side of
Figure 1 shows a schematic of our AV-SpNET. We will describe each
component in details in the following.

2.2.1 Spectrogram Features. We compute spectrogram as our raw
feature input to the network. The audio sampling rate for all of the
databases is set at 16kHz. The spectrogram is computed using short-
time Fourier transform (STFT) with DFT filter size of 800 samples
to extract spectrogram of size 400 X Ny, where Ny denotes the total
number of frames per utterances. Each frame is obtained using 20-
ms Hamming window with 10-ms overlap. We also emphasize the
low-frequency information by passing it through a low-pass filter
with a cutoff frequency set at 4kHz and finally apply logarithm on
the spectrum magnitude to obtain our final spectrogram features.
Since each utterance varies in their duration, we chunk each utter-
ance into 80 frames a segment: (20 — 10)ms X 80 + 10ms = 810ms
- a duration that has been shown to contain enough emotion in-
formation [18]. Each segment shares the same emotion label as an
utterance and is considered as a sample in our training. The exact
number of utterances and segments for each database used is also
listed in Table 1.

2.2.2  Rule-based Arousal Label from Audio. Since there is no emo-
tion annotation in the DaAi media corpus, in order to embed
emotion-related information in our AV-SpNET, we need to gen-
erate a proxy label for the corpus without any explicit human
annotation. Acoustics information has long been shown to contain
more information along the dimension of arousal than the lexical
modality (e.g., [2, 16]). In fact, a robust unsupervised rule-based
arousal indicator has been proposed by Bone et al. [4], which is ca-
pable of obtaining reliable emotion arousal index across databases
without any human annotation.
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In this work, we use the same framework to assign an arousal
index for every utterance in the DaAi corpus. Bone et al. presented
the use of five different acoustic features in their framework: pitch,
vocal intensity, HF500, speaking rate, and jitter; however, due to
the noisy conditions in our DaAi media corpus, we compute only
median pitch and median vocal intensity for each utterance. Then, a
baseline model for each speaker of feature type i, N(9), is built for
each of the DaAi TV program episodes. The arousal score of each

feature type i, denoted as agj) for u'" utterance with feature value
xl(;), is given by:

agj) =2x E[x,(j) >= N(i)] -1 (1)
where E[x,(j) >= N)] represents the percentage of utterances

which are larger than baseline model, N (@) , and the rest are adjust-
ment to bound the arousal score between [-1, 1].
Summing and normalizing score for all feature type i for each

utterance results in the final arousal score, a], for uth utterance.
I
1 i
a, =7 @)

i=1
where I is the number of feature types included (I = 2 in this case).

2.2.3 Dictionary-based Valence Label from Text. We further gen-
erate a proxy valence label for the DaAi media corpus. Lexical
modality is known to capture valence dimension better than the
acoustic features [2, 16]; hence, we leverage the availability of lex-
ical transcripts in the corpus to generate the valence proxy label
for every utterance used. The method is based on dictionary-based
sentiment analysis relying on the assumption that there exists a
text sentiment polarity (i.e., positive, negative, or neutral) for every
word [31].

Therefore, in order to assign a proxy valence score for each
utterance in the DaAi corpus, we utilize three different sentiment
dictionaries: NTU Sentiment Dictionary (NTUSD) [20], the Chinese
Valence-Arousal Words (CVAW) [37], and the Chinese Linguistic
Inquiry and Word Count dictionary (CLIWC) [13]; each includes
a list of Chinese words with their corresponding sentiment label
(positive: +1 or negative: —1). Thus, for each dictionary i, and j¢"
word of u'" sentence denoted as wy,j, the valence score can be
calculated using the following:

®)

where I is number of dictionaries, J,, is number of words in u’ h

utterance, and stf,) _ represents the sentiment value of wy, ; given
u,j >
in each dictionary.

We use a similar strategy as in [4], i.e., to build a speaker-wise
baseline model in order to derive the valence score in this case.
Similar to (1), the valence score v, can be seen as a feature value
and convert to desired score for each utterance in reference to the
corresponding speaker baseline model using the following equation

(generating a bounded score between [-1, 1]):
v), =2XE[vy >=N| -1 (4)

where N denotes baseline model constructed by v, per speaker.
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2.24 Speech Network in CNN Architecture. The AV-SpNET is an
encoder network structure constructed based on CNN architecture.
It includes 2-stage convolution and pooling layers. Both stages
consist of two convolutional layers with batch normalization and
rectified linear units (ReLU) as activation function, and one max-
pooling at the end (similar to the ones proposed in [22])

The AV-SpNET is learned using a multi-task structure, i.e., at
the decoding there are two different tasks that need to be simul-
taneously optimized. One of the tasks is learned to perform input
reconstruction (auto-encoder) and another task is learned to per-
form proxy label recognition. A schematic is shown in Figure 1,
the upper task is essentially a CNN auto-encoder structure, and
the lower task is stacked with fully-connected layers to perform
recognition on the proxy labels.

Hence, denoting the input and reconstruction output as x;, X;,
where i = 1...n, the hidden layers are learned by minimizing the
reconstruction mean-squared loss L. For proxy label recognition,
we denote proxy label and prediction output as y; and g;. To ap-
proximate §j;, we minimize cross-entropy loss L. Thus, the total
loss used in learning the AV-SpNET is £ in (7).

Ly =) llxi =%l (5)
i=1
L == yilngi+(1-y)n(1-3) (©)
i=1
L =alm+(1-a)ly (7)

where « is a balancing factor between two losses to prevent un-
desirable convergence. In this particular structure, the AV-SpNET
can be seen as a front-end encoder operated on the speech spec-
trogram, where the encoder network is learned to embed both the
essential latent speech structures (achieved by the use of autoen-
coder) and the emotion-related information (derived from learning
to recognize proxy labels).

2.3 Recognition Network

The AV-SpNET can be easily used as the front-end to perform
desired target emotion recognition task (in this case, for the [IEMO-
CAP and the NNIME database). We take the learned AV-SpNET
encoder and stack three fully-connected layers with an output layer
as our final recognition network. We keep the AV-SpNET weights
frozen when fine-tuning on the emotion database of interest. In
order to avoid overfitting, dropout is used before the output layer.
Lastly, since the training and the recognition both occur at the
segment-level, a majority voting scheme is used to derive the final
utterance-level emotion labels.

Table 2: Lists of other initialization techniques compared
and their abbreviations.

Abbrev. Description

R Random initial

W./W, Proxy label initial

AE AutoEncoder initial

WaEg,/Wakg, AutoEncoder then proxy label initial

AV-SpNET,/AV-SpNET,  AV-SpNET initial
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Figure 2: Illustration of two specific models compared in this
work. “Encoder” denotes initialization front-end network.

3 EXPERIMENTAL SETUP AND RESULTS
3.1 Experimental Setups

3.1.1  Network Details. The raw spectrogram input is of size 200 X
80. The convolution and the pooling layer has 32 kernels of size 3x3.
We pad only the first convolution layer in each stage of encoder to
maintain the size of feature maps. After the CNN encoder, feature
maps are flattened into 1-D and fed into fully-connected layer of
1024 nodes. Then, for reconstruction task, a fully-connected layer
of 256 node acts as the latent layer and the decoding part is reverse
image of the encoder structure (a 1024 node fully-connected layer
and 2-stage deconvolution layers). At last, one more convolution
layer of 1 kernel is use to merge feature maps into one output.
For proxy label recognition task in the learning of AV-SpNET and
recognition network, after the first 1024-node fully-connected layer,
two more layers of nodes 512 and 128 are stacked, and an output
layer is used to classify either binary or 4-emotion classes depending
on the target task. We utilize ADAM optimizer [19] with an initial
learning rate of 0.001 in learning the AV-SpNET, and Stochastic
Gradient Descent (SGD) with an initial learning rate of 1e-5 in the
target emotion database’s fine-tuning phase. The size of mini-batch
is 32.

3.1.2  Other Initialization Techniques. We compare the effective-
ness of AV-SpNET with other initialization network structures.
There are four other different initialization settings. The first setting
is the standard random initialization without using any pre-training
model. The next one is the standard CNN auto-encoder trained on
the DaAi corpus, and another one is a CNN structure learns to
recognize the proxy labels (these two can be seen as the separate
task in the AV-SpNET; a schematic is depicted in Figure 2). We
further compare a two-stage initialization technique, i.e., learning
an auto-encoder followed by fine-tuning on the proxy labels. All
these methods aim at deriving encoder weight to be used as the
frozen front-end that are simply stacked with the recognition layers.
Table 2 provides a list of these techniques with their abbreviations
used in this work.

3.1.3  Evaluation Metrics and Scheme. The metric used in this works
is unweighted accuracy (UAR). We used a 5-fold speaker indepen-
dent cross validation scheme for all of our experiments. Except for
fine-tuning on all available training set within each fold, we also
evaluate the effective of our framework in reducing the amount of
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fine-tuned emotion labels required. Specifically, within each fold,
we fine-tune using either 25%, 50%, 75%, and 100% of available
annotated data and report their results accordingly.

3.2 Results and Discussions

A summary of our emotion recognition accuracy obtained for both
the IEMOCAP and the NNIME databases is listed in Table 3. The best
accuracy obtained using our proposed front-end speech network
(AV-SpNET) for the IEMOCAP database is: 0.711 (arousal), 0.522
(valence), 0.431 (4-emotion classes), and for the NNIME database
is: 0.651 (arousal) and 0.530 (valence). There are several observa-
tions to note. By comparing AV-SpNET, with techniques of Wy
and AE, it is evident that in order to learn an emotionally-relevant
speech front-end network from large collection of diverse back-
ground media data, the initialization network requires more than
just an unsupervised auto-encoder or a simple proxy emotion label
learning. Furthermore, our proposed joint optimization framework
is also critical as evident in its better performance obtained over
separate AE then proxy label learning, W 4 . In fact, we also ob-
serve that most of these other initialization networks obtain an
accuracy worse than simply randomly initialize the speech CNN
network. The vast discrepancy between background corpus and the
emotion target databases may actually result in a negative transfer
of information (a similar finding is also indicated in other transfer
learning task [35]).

The use of AV-SpNET, not only obtains generally the best ac-
curacy over all methods across these emotion recognition tasks
but also requires lesser amount of fine-tuning labeled data on the
target database in order to reach its maximum accuracy. In specifics,
it achieves the best arousal classification accuracy in the NNIME
database using 75% of fine-tuning data and the best valence classi-
fication rate using also 75% of fine-tuning data. In the IEMOCAP
database, we observe a similar trend, i.e., the best arousal classifica-
tion happens at using 75% of fine-tuning in-domain annotated data,
and 75% of data for the four-class emotion classification. It is excit-
ing to see that our proposed front-end network embeds meaningful
emotion-related information that is capable in improving emotion
recognition accuracy for the two different emotion databases at the
same time requiring less human annotations.

At last, Table 3 also demonstrates an interesting evidence that
when using the AV-SpNET) as the speech front-end network, with
roughly 50% of fine-tuned in-domain data, the recognition accuracy
obtained is already similar to method of fine-tuning on all available
data with random network weight initialization. The AV-SpNETy
not only helps in obtaining improved accuracy, it provides a robust
feature representation power as a front-end network. Furthermore,
learning AV-SpNET, with arousal proxy label works better for
the IEMOCAP but not with the valence proxy labels; while learn-
ing with valence proxy label benefits in recognition tasks for the
NNIME database. We hypothesize this may due to the fact that
the our valence proxy label is derived from the Chinese sentiment
dictionary; however, further research into the potential language
difference and other suitable emotion proxy labels will be an im-
portant direction to investigate. In short, our experimental results
demonstrate that our proposed AV-SpNET learned from the me-
dia data collected in-the-wild provides a robust and an effective
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Table 3: A summary of emotion recognition results reported using unweighted accuracy (UAR) for different initialization
networks. The percentages indicate the amount fine-tuning data involved in learning the recognition network (25%, 50%, 75%,

or 100%).

The IEMOCAP: Interactive Emotional Dyadic Motion Capture Database

Arousal Valence 4 Emotion Categories
25% 50% 75% 100%  25% 50% 75% 100%  25% 50% 75% 100%
R 0.685 0.696 0.701 0.712 0.505 0.498 0.510 0.519 0.386 0.385 0.407 0.417
W, 0.665 0.685 0.686 0.696 0.507 0.504 0.505 0.500 0.335 0.329 0.355 0.372
Wy 0.675 0.685 0.686 0.685 0.499 0.504 0.500 0.500 0.308 0.346 0.361 0.374
AE 0.636 0.649 0.660 0.654 0.510 0.502 0.500 0.496 0.285 0.350 0.362 0.361
WAE, 0.633 0.667 0.678 0.685 0.503 0.501 0.500 0.505 0.311 0.347 0.337 0.349
Wug, 0.644 0.664 0.657 0.684 0.500 0.497 0.501 0.500 0.312 0.308 0.347 0.349
AV-SpNET, 0.692 0700 0.711 0.711 0.514 0.513 0.509 0.522 0.387 0.419 0.430 0.431
AV-SpNET, 0.693 0.699 0.691 0.703 0.513 0.502 0.509 0.506 0.375 0.380 0.386 0.410
The NNIME: The NTHU-NTUA Chinese Interactive Multimodal Emotion Corpus
Arousal Valence

25% 50% 75% 100% 25% 50% 75% 100%

R 0.575 0.630 0.634 0.640 0.503 0.515 0.516 0.516

W, 0.580 0.603 0.608 0.607 0.505 0.516 0.518 0.492

Wy 0.586 0.601 0.623 0.621 0.498 0.515 0.506 0.503

AE 0.574 0.589 0.608 0.624 0.492 0.516 0.508 0.495

WAk, 0.585 0.601 0.607 0.612 0.488 0.522 0.500 0.500

Wk, 0.593 0.602 0.610 0.612 0.487 0.503 0.504 0.501

AV-SpNET, 0.614 0.633 0.634 0.636 0.518 0.512 0.517 0.516

AV-SpNET, 0.633 0.642 0.651 0.632 0.509 0.522 0.530 0.523

speech front-end network that can be easily be utilized, i.e., by
simply stacking with a couple fully-connected layers as recognition
network, to different targeted emotion databases of interest.

4 CONCLUSIONS AND FUTURE WORKS

A rapid deployment of SER technology for a wide range of appli-
cations, while important, remains challenging due to the natural
difficulties in both obtaining large scale annotated emotion data and
also handling the variability in the collected speech data across dif-
ferent domains. In this work, we present a initialization - fine-tuning
strategy in mitigating these issues. In specifics, we propose to learn
an arousal-valence speech front-end network (AV-SpNET) from a
large scale unlabeled media data collected in-the-wild. AV-SpNET
is learned with a multi-task structure in a CNN architecture, where
one of the tasks is to perform input reconstruction and another task
is to perform proxy label recognition. The proxy labels are derived
multimodally from audio and text data without any human annota-
tion. The learned AV-SpNET is then used as the speech front-end,
i.e,, no additional weights adaptation needed, in carrying out SER
tasks in the target emotion database. We conduct our recognition
experiments on two separate and different emotion databases. It
demonstrates that the AV-SpNET not only obtains the best recog-
nition accuracy compared to other initialization methods but also
require lesser amount of annotated in-domain data to achieve the
maximum SER recognition rates.
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There are multiple future directions. First, the framework in
deriving proxy emotion labels from the available media data col-
lected in-the-wild plays an important role in the effectiveness of
this speech front-end network. We will immediately investigate
emotion recognition accuracy obtained as a function of the differ-
ences in language, culture, and other contextual factors existed
between the derived proxy labels in the background corpus and
the target emotion databases. Further technical development in
the front-end CNN network structure to capture supra-segmental
information, such as prosody intonation, and also the inclusion
of other relevant emotion information in our media corpus will
be explored in order to obtain an improved framework. Through
continuous advancement in our proposed network, our aim is to
provide a publicly-available speech front-end network that is not
only robust and reliable in emotion recognition but also can easily
be adapted to a wide range of scenarios of human-centered research
and applications [29].
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